paper archives

Stay hungry, stay foolish. You are as good as your last paper.

Analyst 2013, 138(17), 4885-4891

Boron-doped graphene and boron-doped diamond electrodes: detection of biomarkers and resistance to fouling

Doped carbon materials are of high interest as doping can change their properties. Here we wish to contrast the electrochemical behaviour of two carbon allotropes - sp(3) hybridized carbon as diamond and sp(2) hybridized carbon as graphene - doped by boron. We show that even though both materials exhibit similar heterogeneous electron transfer towards ferro/ferricyanide, there are dramatic differences towards the oxidation of biomolecules, such as ascorbic acid, uric acid, dopamine and beta-nicotinamide adenine dinucleotide (NADH). The boron-doped graphene exhibits much lower oxidation potentials than boron-doped diamond. The stability of the surfaces towards NADH oxidation product fouling has been studied and in the long term, there is no significant difference among the studied materials. The proton/electron coupled reduction of dopamine and nitroaromatic explosive (TNT) takes place on boron-doped graphene, while it is not observable at boron-doped diamond. These findings show that boron-doped sp(2) graphene and sp(3) diamond behave, in many aspects, dramatically differently and this shall have a profound influence upon their applicability as electrochemical materials.

Related Papers

Follow Us

Get in touch